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ABSTRACT: The hygroscopic nature of polyamide (PA) polymers motivates the development of analysis tools for use in assessing their

moisture content. Among possible analysis techniques, near-infrared (near-IR) spectroscopy is non-destructive, requires little or no

sample preparation, and is compatible with sample thicknesses on the order of mm. The work reported here makes use of transmis-

sion near-IR spectroscopy in the combination region (5000–4000 cm21) to develop a protocol for assessing the moisture content of

PA 66 samples directly from their spectral intensities after preprocessing with the standard normal variate transform and partial least-

squares. The method is compatible with online or continuous monitoring applications and can be calibrated without the use of

destructive reference measurements such as thermogravimetric analysis. The long-term calibration performance of the technique is

evaluated, and on a scale of 0–100% moisture uptake, the standard error of prediction is found to average 1.4% over 6 months.
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INTRODUCTION

Polyamides (PAs) are a widely used class of polymers that have

significant commercial importance.1 These polymers have

hygroscopic properties, meaning they absorb water from the

surrounding environment.2,3 Commercially available PA poly-

mers can absorb up to an average of 8–10% of water by dry

weight upon saturation.4 The degree of affinity for water

depends on the chemical structure of the PA species considered,

and the rates of moisture uptake or subsequent moisture loss

vary with the relative humidity, temperature, and the chemical

structure of the specific PA considered.4

Moisture absorption of PA polymers has been a topic of interest

for many years.2,3,5 These polymers are sensitive to moisture due

to their ability to form hydrogen bonds with water molecules

using the polar amide groups.2,6,7 This hydrogen bonding process

is illustrated in Figure 1. Also, water molecules are believed to

displace PA molecules, thereby resulting in swelling of the PA

molecular matrix.4 Water can act as a plasticizer which increases

toughness and flexibility while reducing the tensile strength and

modulus of PA polymers. Ultimately, absorption of moisture

results in deterioration of electrical properties and poor dimen-

sional stability in an environment of changing relative humidity.7

Most common techniques used in the determination of mois-

ture content of a given PA are based on thermal analyses such

as thermogravimetric analysis (TGA), differential scanning calo-

rimetry (DSC), and loss-on-drying (LOD). Although these

methods are reliable and easy to conduct, they are time-

consuming and destructive. Hence, they cannot be used in

online analyses.2,3 Among chemical analysis methods, the Karl–

Fischer titration is also used to determine the moisture content

of PAs. Similar to the thermal analysis techniques, this method

is also time-consuming, incompatible with online analyses and

requires hazardous chemicals.2

Vibrational spectroscopy has also been used to characterize

moisture content in PAs. This approach is attractive because it

is nondestructive, requires little or no sample preparation and is

potentially amenable to online analyses. Among the methods

applied, both mid-infrared and near-infrared (near-IR) meas-

urements have been performed. Mid-infrared approaches have

the advantage of the use of fundamental vibrations, but strong

absorption of light in this region from both water and the func-

tional groups of the polymer limit these measurements to the

analysis of thin films.2,3

By contrast, near-IR spectroscopy is compatible with polymer

samples with considerable thickness (in the mm range) as the

near-IR region exhibits reduced absorption when compared to

the mid-infrared. The near-IR spectra of PAs have distinctive

combination and overtone bands associated with CAH and

NAH groups. However, the weak and highly overlapped spectral
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features in the near-IR region present challenges when quantita-

tive analyses are performed. Relating near-IR spectral intensities

to quantitative measures such as moisture content requires the

use of multivariate calibration techniques such as partial least-

squares (PLS) regression.8

In previous work, Lachenal investigated the potential of near-IR

spectroscopy to be used in the analysis of water content, degree

of crystallinity, inter- and intra-molecular interactions of PAs,

polyethylene terephthalate (PET), and polyurethane polymers.3

Miller et al. used near-IR spectroscopy and chemometrics to

analyze the morphology, amount of absorbed water, and the

amount of adhesive present in polyethylene/PA laminates.9 Both

of these studies focused on studying the spectral features of spe-

cific polymers as they were subjected to changes in moisture

content, temperature, etc. Neither investigated the ability to

develop quantitative models to predict the moisture content of

a given polymer.

Camacho et al. used near-IR spectroscopy and chemometrics to

determine the moisture content of recycled PA 66 polymers

using spectral features in the 4500–9000 cm21 region.2 This

work was motivated by the premise that upon uptake of water,

the overtones and combination peaks of PA 66 that arise due to

the amide linkage are expected to deviate as a result of hydro-

gen bonding. Also, the intensities of the water bands themselves

are expected to increase upon moisture uptake.

Camacho et al. documented the use of PLS regression to

develop calibration models to predict moisture content in PA

66 polymers. In this study, however, the reference methods used

for developing the calibration models were destructive methods

such as TGA, DSC and LOD. This limits the integration of the

method with routine nondestructive analysis procedures. Fur-

thermore, the long-term predictive ability of the developed cali-

bration models was not assessed.

Our laboratory has developed a number of quantitative meth-

ods in near-IR spectroscopy that focus specifically on the com-

bination spectral region of 4000–5000 cm21.10–14 This region

lies between two intense and broad absorption bands of water

that are centered near 3300 and 5200 cm21,15,16 and thus pro-

vides a spectral window in which samples, even those that con-

tain a high water content, can be analyzed for a variety of

chemical constituents10,12,13 or physical properties.14 Relative to

other regions of the near-IR, spectral bands in the combination

range are more intense, narrower, and have more defined

shapes.17 In addition, while diminished, significant water

absorption remains and thus the water content of a sample can

also be assessed. By optically isolating this region during the

spectral acquisition, instrumental (e.g., source power on the

detector) and experimental (e.g., optical path length) parame-

ters can be optimized and therefore spectral quality can be

maximized.

In the work discussed in this article, the methodology reported

by Camacho is extended in several respects. Partial least-squares

regression models are developed to determine the moisture con-

tent of PA 66 polymers directly from combination region near-

IR spectra. The prediction performance of these moisture mod-

els is assessed for robustness with time and the ability to predict

moisture uptake across different sheets of PA 66. The reliability

of using an analytical balance as an alternative to time-

consuming TGA measurements to obtain reference values for

moisture content is also demonstrated in this work.

EXPERIMENTAL

Apparatus and Reagents

All spectral data collections were performed with a Bruker Ver-

tex 70 (Bruker Optics, Billerica, MA) Fourier transform (FT)

spectrometer configured with a tungsten-halogen lamp source, a

calcium fluoride (CaF2) beam splitter and a liquid nitrogen

cooled indium antimonide (InSb) detector. A low-pass filter

(OCLI, Santa Rosa, CA) was used to restrict the light beyond

5000 cm21. Commercially obtained PA 66 samples (McMaster-

Carr, Elmhurst, IL) were used in this analysis. A metal sample

holder was used to hold the samples. Weight measurements of

the sample pieces were obtained with a Mettler AE200 analytical

balance (Mettler-Toledo, Columbus, OH). A Fisher Scientific

Isotemp Model 655G oven (Fisher Scientific, Pittsburgh, PA)

and a glass desiccator equipped with drierite (W.A. Hammond

Drierite, Xenia, OH) were used for drying purposes. Relative

humidity measurements were obtained from a TES 1364

humidity-temperature meter (TES Electrical Electronic, Taipei,

Taiwan). Thermogravimetric measurements made to establish

reliable procedures for assessing moisture uptake were per-

formed with a commercial TGA instrument (Model Q500-0305,

TA Instruments, New Castle, DE).

Procedures

Near-Infrared Measurements. Six pieces of PA 66 (A, B, C, D,

E, and F) were used in the spectral data collections. These sam-

ples were cut from three different commercially available sheets

of PA 66 polymer. Samples A, B, C, D, E, and F were cut from

PA 66 sheets 1, 2, 3, 1, 2, and 3, respectively. The average

dimensions of the six samples were 25 3 20 3 0.40 6 0.01 mm,

and the average weight was 0.2350 6 0.0001 g. All the spectral

data collections were performed at ambient temperature condi-

tions (�21–22�C). No efforts were made to control the sample

temperatures.

Sample pieces were exposed to several methods of moisture

uptake and drying. Methods of moisture uptake included soak-

ing the PA in water, placing the PA piece in a humidity cham-

ber and exposing the PA sample to ambient temperature and

humidity conditions in the laboratory. Methods of drying

Figure 1. Schematic representation of moisture uptake on PA polymers.

Water molecules form hydrogen bonds with polar amide groups in the PA

structure.
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included drying in a desiccator, drying in an oven (�80 and

�100�C) and exposing the sample to ambient temperature and

humidity conditions in the laboratory.

Moisture uptake was assessed by weighing the sample piece

before and after exposure to water. The percentage moisture

uptake of a given piece of PA 66, M, at a given time was calcu-

lated on the basis of the dry weight of the sample and is given

in eq. (1).

M5
Wwet2Wdry

Wdry

3100 (1)

In the equation, Wwet is the weight of a given piece of PA 66

with some absorbed moisture and Wdry is the weight of the

sample at 0% moisture uptake.

A summary of the spectral collection protocol is given in Table

I. For calibration purposes, spectra were collected from 76 PA

66 samples over three consecutive days using PA 66 pieces A

and E. For this discussion, a sample is considered to be a spe-

cific piece of PA 66 subjected to a given set of moisture uptake

conditions. Three consecutive spectra were collected from the

sample after placing it in the spectrometer. A total of 3 3

76 5 228 calibration spectra were thus obtained. Each piece of

PA 66 was weighed at the start and end of the spectral acquisi-

tion to allow the assessment of moisture loss during the 6 min

of data acquisition time. This issue will be discussed in detail in

a later section.

To assess the long-term predictive ability of the quantitative

moisture models, 10 sets of spectra were collected using the

other PA 66 pieces (B, C, D, and F) over a period of 6 months.

Three replicate spectra were again collected for each sample.

Moisture uptake values were randomized in the calibration and

prediction sets to minimize the correlation of moisture uptake

with time. The method of moisture uptake and drying selected

for a given piece of PA 66 was also randomized to assess the

prediction performance of the moisture uptake model across

different sheets of PA 66.

Open-beam air spectra were used as the background in the cal-

culation of absorbance values throughout the data collection

For a given data collection session, eight warm-up air spectra

were collected at the beginning of the day and three intermedi-

ate air spectra were collected after the measurement of every

fourth sample. An additional six air spectra were collected at

the end of the day. The average of the air spectra collected on a

given day was used in calculating the absorbance values for

sample spectra collected on that day. A 6.3% metal thin-film

neutral density filter (Rolyn Optics, Covina, CA) was used to

attenuate the source intensity during the collection of the open-

beam air spectra.

The raw data consisted of 256 coadded double-sided interfero-

grams containing 14,220 points collected at every zero crossing

of the helium-neon (He-Ne) reference laser. This corresponded

to a maximum digitized frequency of 15,800.45 cm21. The

nominal spectral resolution was 4 cm21 and an aperture setting

of 6 mm was used. All interferograms were Fourier processed to

single-beam spectra by use of the Bruker Opus software control-

ling the spectrometer (Version 6.5, Bruker Optics). The single-

beam spectra were computed with a point spacing of 1.9288

cm21 by applying two levels of zero filling, Blackmann-Harris

3-Term apodization and Mertz phase correction. The wavenum-

ber range selected for this study was from 4000 to 5000 cm21.

Further calculations were performed with Matlab (Version 7.4,

The Mathworks, Natick, MA) on a Dell Precision 670 worksta-

tion (Dell Computer, Round Rock, TX) operating under Red

Hat Linux WS (Version 5.2, Red Hat, Raleigh, NC). Nonlinear

curve fitting to assess moisture loss with respect to time was

performed with Microsoft Excel (Version 2007, Microsoft, Red-

mond, WA).

Before quantitative modeling of moisture uptake was investi-

gated, the single-beam spectra of the PA 66 samples were con-

verted to absorbance units by use of the appropriate open-beam

air background. The resulting spectra were normalized by use of

the standard normal variate (SNV) transform18 applied over the

Table I. Summary of Spectral Collection Protocol for the Moisture Uptake Models

Data set
Number of
samplesa

Number of
spectra collected

Time since
calibration (weeks)

Calibrationb 76 228 0

Prediction set 1 (PS01) 42 126 0.5

Prediction set 2 (PS02) 41 123 1

Prediction set 3 (PS03) 45 135 2

Prediction set 4 (PS04) 43 132 3

Prediction set 5 (PS05) 43 132 4

Prediction set 6 (PS06) 48 144 6

Prediction set 7 (PS07) 45 135 8

Prediction set 8 (PS08) 40 120 14

Prediction set 9 (PS09) 48 144 18

Prediction set 10 (PS10) 46 138 23

a A sample is defined as a piece of PA 66 subjected to a given level of moisture uptake.
b The calibration data used PA 66 pieces A and E while the prediction sets were recorded with pieces B, C, D, and F.
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4000–5000 cm21 range. This method corrects for overall addi-

tive and multiplicative scaling effects by translating and scaling

each spectrum to a mean of zero and a standard deviation of

1.0 absorbance units (AU).

Thermogravimetric Measurements. To assess the reliability of

assigning moisture uptake values on the basis of measurements

with the analytical balance, a set of parallel measurements was

performed with TGA. Four pieces of PA 66 (average weight:

12.4 6 0.1 mg) were dried in the oven to remove any moisture

and subsequently weighed with the analytical balance. One piece

each was taken from the original PA 66 sheets 1 and 2, while

two pieces were taken from sheet 3. These were the same sheets

of PA 66 from which the six pieces were taken for the near-IR

measurements.

After weighing, the PA pieces were soaked in water until they

were saturated. Weight measurements were then made on the

saturated PA pieces before they were introduced to the TGA

instrument. The temperature range analyzed in these experi-

ments was from 20 to 600�C with a linear ramp of 5.00�C
min21. The composition of the purge gas used was 19–23% O2

in N2. Once the PA sample was completely decomposed, the

first derivative of the mass loss (peak centered at 100�C) with

temperature was computed to calculate the % mass loss due to

evaporation of water.

RESULTS AND DISCUSSION

Complementary Weight Measurements with TGA

Moisture uptake percentages obtained with the TGA method

were well matched to the moisture uptake values commonly

reported in commercial literature.4 Also, moisture uptake per-

centages obtained with the TGA method were well correlated

with the moisture uptake values obtained with the analytical

balance. The percentage difference between the two methods

ranged from 21.65% to 10.78%, with the mean absolute value

of the percentage differences equal to 0.74%. A pairwise t test

(two-tailed) to compare the two sets of % moisture uptake val-

ues was only significant at 47 % (mean and standard deviation

of differences equal to 20.35% and 1.00%, respectively). These

results suggest that the weight measurements obtained with the

analytical balance were consistent with the TGA measurements

and that the precision of the % moisture uptake values was on

the order of 61%. Based on these results, weight measurements

obtained from the analytical balance were used subsequently in

the development of calibration models for moisture uptake in

PA.

Moisture Uptake of PA 66 and Relative Humidity

Two pieces of PA 66 (average weight: 0.2376 6 0.0001 g) were

dried in the oven to remove any moisture and weighed using

the analytical balance. The two samples were then exposed to

ambient relative humidity (RH) and temperature conditions in

the laboratory for 20 days. Weight measurements were made on

the samples each day using the analytical balance, and relative

humidity and temperature measurements were performed with

the humidity–temperature meter. As described by eq. (2), the

moisture uptake pattern of the PA 66 pieces was expressed each

day in relative terms compared to the previous day.

DM5
Wn2Wn21

Wn

3100 (2)

In eq. (2), DM is the relative percentage change in moisture,

Wn is the weight of the piece of PA 66 on day n, and Wn21 is

the corresponding weight of the sample on the previous day

The trend in the moisture uptake pattern shown in Figure 2

clearly indicates the reversible nature of moisture uptake in PAs

and its dependence on the relative humidity of the environ-

ment. For this experiment, the contribution of temperature was

negligible as the laboratory temperature showed no significant

change over the period of data collection.

Near Infrared Spectra of PA 66 Upon Water Uptake

Figure 3 illustrates near-IR absorbance spectra of PA 66

obtained at different levels of moisture uptake. The displayed

spectra were normalized with the SNV transform. It can be

observed that the intensity of absorption near 4000 and 5000

cm21 is increasing with increasing moisture content. This is

due to the presence of the two dominant water absorption

peaks centered at 3300 cm21 (fundamental OAH stretching)

and 5200 cm21 (combination band of OAH fundamental

stretching and bending).

Figure 2. (A) Ambient % relative humidity (solid circles) and temperature

measurements (open circles) obtained over the 20-day time period. (B)

Moisture uptake pattern of PA 66 pieces B (black) and C (gray) over the

20-day time period. No data were taken on days 16 and 17.
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Application of a Correction Strategy for Moisture Loss

During Spectral Acquisition

Possible moisture loss inside the spectrometer was of a concern

as the relative humidity inside the sample compartment was

measured to be 2–4%. Moisture loss during the spectral collec-

tion was investigated on the basis of assuming either a linear or

an exponential decay. To test the two hypotheses, three pieces of

PA 66 corresponding to initial values of 80, 65, and 45% mois-

ture uptake [eq. (1)] were exposed to the dry conditions inside

the sample compartment and weight measurements were

obtained every 2 min for a total of 12 min. This time spacing

corresponds to the collection of one replicate spectrum.

As described in eqs. (3–5), the moisture loss process was

defined on the basis of Z, the % moisture remaining to be lost

during the exposure to dry air. As a function of time, t, Z is

defined as:

Zt 5
DWt2max 2DWt

DWt2max

3100 (3)

DWt2max 5Winitial2Wt2max (4)

DWt 5Winitial2Wt (5)

In eq. (3), DWt-max corresponds to the total weight loss from

time zero to the maximum time of the experiment (i.e.,

tmax 5 12 min (720 s) in the example described here). This is

defined in eq. (4) as the difference between the initial weight,

Winitial, and the weight after the maximum time, Wt-max. Experi-

mentally, these initial and final weights are averages of three

consecutive weight measurements taken at the beginning and

end of the experiment, respectively. Similarly, DWt corresponds

to the weight loss at a given time, t, and is defined in eq. (5) as

the difference between the initial weight, Winitial, and the weight

at time, t, Wt.

Figure 4 plots the values of Zt computed with tmax 5 720 s.

These results suggest that moisture loss from the pieces of PA

66 follows an approximate exponential decay. If just the first 6

min are considered as the time required to collect three replicate

spectra (i.e., tmax 5 360 s), about 49% of the total moisture loss

(i.e., Zt 5 51% moisture remaining to be lost) occurred during

the acquisition of the first replicate spectrum while about 36

and 15% of the total moisture loss occurred during the collec-

tion of the second and third replicate spectra, respectively.

On the basis of this experiment, an exponential decay correction

was performed in order to assign a more accurate weight to the

sample at the time of spectral collection. The data displayed in

Figure 4 were fit to a simple exponential decay function, yield-

ing the fitted result displayed in eq. (6) and represented as the

solid line in Figure 4.

Zt 555:5e20:00432t 1et (6)

In the equation, et is the residual at time, t, that describes the error

in the fit. This expression allows the value of Zt to be estimated

for any time (in seconds) within the range of 0 to the defined

maximum time (e.g., 6 min in the context of acquiring three spec-

tra). Given this estimated value along with the initial and final

weights of the sample (i.e., Winitial and Wt-max, respectively), eqs.

(3–5) can be combined and rearranged to solve for Wt:

Wt 5
Zt

100
Winitial 2Wt2maxð Þ1Wt2max (7)

As an example, at Z 5 50%, eq. (7) simplifies to the weight at

the time corresponding to the average of the initial and final

weights.

Figure 3. Near infrared spectra of PA 66 in the range of 4000–5000 cm21

obtained at different levels of moisture uptake [eq. (1)]. Spectra were nor-

malized with the SNV transform. Ordering of the spectra with respect to

moisture uptake is observed at the two extremes of the plot as a conse-

quence of the strong absorption bands of water near 3300 and 5200

cm21. Line types of solid black, dotted, dashed, dash-dot, and solid gray

correspond to moisture uptake values of 0, 15, 35, 66, and 99%,

respectively.

Figure 4. Values of Zt [eq. (3)] obtained from three PA 66 pieces with

respect to time of exposure to the dry atmosphere of the sample compart-

ment of the spectrometer. The calculation of Zt was based on tmax 5 720 s.

The open circles, solid circles, and triangles correspond to 80, 65, and 45

initial values of % moisture uptake [eq. (1)], respectively. The solid line

represents the results of fitting the data to an exponential decay function

(y 5 55.5e20.00432x). The value of r2 corresponding to the fitted equation

was 0.944. The last data points do not reach Zt 5 0 because Wt-max [eq.

(4)] is computed as the average of three replicate weights and is typically

smaller than the single weight at the last time point due to further evap-

oration of water during the weighing procedure. The dashed line in the

figure corresponds to the time required to collect three replicate spectra

(360 s).
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Wt 50:5 Winitial 2Wt2maxð Þ1Wt2max 50:5Winitial

10:5Wt2max 5
Winitial 1Wt2max

2

(8)

Given the estimated weight at time t, eq. (1) can be used to

estimate the corresponding % moisture uptake that corresponds

to that time.

Assessment of the effectiveness of the exponential decay correc-

tion was performed by developing separate PLS calibration

models for exponentially corrected and uncorrected % moisture

uptake values. For the case of uncorrected values, the average

weight of the sample before and after the spectral acquisition

was assigned to each replicate spectrum.

In addition, a third model was built based on a simple linear

decay function. For the linear function, the starting and ending

weights and their corresponding times relative to the start of data

acquisition (i.e., 0 and 6 min) were fit to a two-parameter linear

model, and the resulting slope and intercept were used to assign a

weight to each spectrum on the basis of its average collection time

(i.e., 1, 3, and 5 min after the start of data collection).

The SNV-normalized absorbance spectra were used in comput-

ing the three models and both the wavenumber region submit-

ted to the PLS procedure and the number of PLS model terms

(latent variables) were optimized for each model by a grid-

search procedure. This optimization protocol involved scanning

the wavenumber range from 4000 to 5000 cm21 in steps of 25

cm21 using window sizes from 300 to 800 cm21 in steps of 25

cm21. For each wavenumber range investigated, models based

on 1–10 latent variables were computed. Cross-validation (CV)

based on leaving out 10% of the calibration spectra per itera-

tion was used to identify the optimal model. In this case, the

CV procedure builds a model with 90% of the data and uses

that model to predict the 10% withheld. By cycling through the

withheld spectra, a cross-validated standard error of prediction

(CV-SEP) can be computed to describe the model performance.

The CV-SEP is an error estimate based on pooling the errors in

predicted % moisture uptake for each of the spectra withheld

from the calculation of the models. A smaller value of CV-SEP

indicates better performance in prediction.

Once the spectral range associated with the minimum CV-SEP

was determined, the optimal number of latent variables was

taken as that which produced a value of CV-SEP not statistically

different from the minimum CV-SEP. This determination was

made by use of an F-test at the 95% confidence level.

For the exponentially corrected, linearly corrected, and uncor-

rected values of % moisture uptake, the CV-SEP values were

0.84, 1.13, and 1.93%, respectively. This suggests that the expo-

nential decay correction addresses the moisture loss during the

spectral collection effectively, thereby improving the predictive

ability of the model. All further work reported here was per-

formed with the exponentially corrected sample weights.

Evaluation of Spectral Noise

The quality and consistency of the spectra in the calibration

and prediction sets was determined by the average root-mean-

square (RMS) noise of spectra in each data set. This calculation

was performed by taking the ratio of each pairwise combination

of the three replicate single-beam spectra corresponding to a

given moisture uptake level. The performance of the instrument

itself was determined by the average RMS noise of air spectra

for each day. This calculation was performed by taking the ratio

of each pairwise combination of the replicate air spectra col-

lected on a given day.

After taking the ratio, the resulting spectra were converted to

absorbance units for the noise calculation. In this study, the spectral

region from 4800 to 4200 cm21 was used to compute the RMS

noise. Systematic components in the noise spectra were removed by

fitting the selected spectral region to a third-order polynomial func-

tion and computing the RMS noise in the resulting spectral resid-

uals. Noise levels for both sample and air spectra were consistent

across the time span of the data collection. Across the 11 data sets,

the individual mean values of the noise levels for the air spectra in

each data set ranged from 3.9 to 4.8 mAU, with an average of 4.3

mAU. The corresponding values for the PA 66 samples were a range

of 59.1–73.7 mAU, and a mean value of 62.7 mAU. The noise levels

observed for the PA spectra are higher, reflecting the reduction in

transmitted light intensity caused by the presence of PA and water.

Calibration Models for Moisture Uptake on PA 66

To assess the ability to predict moisture uptake on PA 66 sam-

ples, PLS calibration models were generated from the SNV-

normalized PA absorbance spectra in the calibration set and

then applied to the 10 prediction sets. As described previously,

a cross-validation procedure based on leaving out 10% of the

calibration spectra per iteration was used to guide the optimiza-

tion of the wavenumber range and number of latent variables.

The best calibration model found was based on a wavenumber

range of 4400–4000 cm21 with three PLS factors. The CV-SEP

value for this model was 0.65%.

Figure 5 is a score plot that illustrates the variance explained by

the first two PLS factors computed from the optimized wave-

number range of the calibration spectra. The first PLS factor

Figure 5. Partial least-squares score plot for factors 1 and 2 of PA 66 spectra

used in the calibration model. Data labels are % moisture uptake values. More

than 99% of the variance in the calibration data matrix is explained by the first

two PLS latent variables. The values of % moisture uptake generally increase

along a parabola that runs from the upper left to the upper right of the plot.
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explains 98% of the variance which is primarily the contribu-

tion from water itself. Together with the second PLS factor, a

total of 99.3% of the data variance is explained. The points

on the plot are labeled according to the corresponding values of

% moisture uptake. In general, the values of % moisture uptake

increase along a parabola that runs from the upper left to the

upper right of the plot. Both PLS factors are clearly necessary to

organize the data according to moisture content.

Prediction Performance of Moisture Uptake Models

for PA 66

The long-term prediction performance of the moisture uptake

models was assessed using the 10 prediction sets of PA 66 spectra

collected over 6 months. The prediction performance of the mod-

els is summarized in Table II and Figure 6. The standard error of

prediction (SEP) values reported in the table are a reflection of

the standard deviation in the residuals (errors) between predicted

and assigned (i.e., weight-based) values of % moisture uptake.

These SEP values must be considered in the context of the 0 (dry)

to 100% (saturated) range of the % moisture uptake values and

the absolute error of roughly 61% in the assigned values.

The calibration model gave good prediction results (SEP values

ranging from 0.96 to 1.93%) which is indicative of the robust-

ness of the models with time. These low SEP values also con-

firm the ability of the models to predict moisture uptake across

Table II. Prediction Performance of PLS Calibration Models for Moisture

Uptake on PA 66

Data set SEPa (% moisture uptake)

Calibrationb 0.84

PS01 1.32

PS02 1.17

PS03 1.28

PS04 0.96

PS05 1.40

PS06 1.23

PS07 1.57

PS08 1.06

PS09 1.93

PS10 1.74

a Moisture uptake percentages computed with eq. (1).
b Results reported for the calibration data are CV-SEP values.

Figure 6. (A) Prediction performance of PLS calibration models for mois-

ture uptake on PA 66. (B) Plot of SEP with respect to time since the cali-

bration was performed. A slow degradation in performance (i.e., increase

in SEP) can be seen across the �6 months of data collection. A linear

regression line is superimposed on the plot.

Figure 7. (A) Correlation and (B) residual plots for % moisture uptake in

prediction set PS04. The solid lines in panels A and B correspond to per-

fect correlation between estimated and reference values of % moisture

uptake and residuals of 0.0%, respectively.
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different sheets of PA 66 polymers. Figure 6(B) plots the SEP val-

ues with respect to the time since the calibration data were

recorded. While there is a gradual increase in SEP with time, we

consider a 2% or smaller absolute error in % moisture uptake

over 6 months to be a result good enough for practical use.

Figures 7 and 8 display correlation and residual plots for predic-

tion sets PS04 and PS10, respectively. These data represent a time

span of 3 and 23 weeks, respectively, relative to the collection of

the calibration data. Overall, the prediction sets exhibit very good

correlations between predicted and reference levels of % moisture

uptake. However, as the time span increases relative to the calibra-

tion data, both correlation and residual plots exhibit some degra-

dation in the model performance. This is particularly evident in

the residual plots which begin to show some prediction bias.

CONCLUSIONS

Experimental results obtained in this study clearly indicate the

reversible nature of moisture uptake of PAs and its dependence

on the percentage RH of the environment. Experimental results

also demonstrate that commercially available PA 66 polymers

are capable of absorbing up to an average of 8–10% of water

(relative to their dry weight) upon saturation. These findings

motivate the need for practical measurement techniques to

determine the moisture content of PA samples.

The quantitative analysis methodology developed in this work

provides a practical way to measure the moisture content of

PAs in a manner that is compatible with continuous monitoring

or online applications. Furthermore, it was demonstrated that

the method could be calibrated reliably with simple mass meas-

urements, eliminating the need for destructive reference meas-

urements such as TGA. The combination of spectral

preprocessing by the SNV transform and PLS regression allowed

the generation of successful calibration models directly from

transmission near-IR spectra.

The long-term predictive performance of these moisture models

was assessed using 10 prediction sets of PA 66 spectra at differ-

ent moisture levels spanning a time period of 6 months. On a

scale of 0–100% moisture uptake, the SEP values obtained for

these prediction sets ranged from 0.96 to 1.93%, with an avera-

ge 6 standard deviation of 1.4% 6 0.3%. These models were

also successful in predicting moisture uptake across different

sheets of PA 66.

When compared to existing techniques (TGA, DSC, LOD, etc.),

near-IR spectroscopy provides a reliable and fast method to

determine the moisture content of a given PA polymer. This

method can be applied to reasonably thick polymer sheets (e.g.,

in the mm range) as opposed to methods based on mid-

infrared spectroscopy.

While beyond the scope of the present work, an interesting

follow-on study would be to expand the calibration data to

mimic more closely a specific industrial process or type of PA

sample. For example, in a given application, the PA samples

encountered may have surface contaminants that contribute

their own signatures to the near-IR spectra. To handle such a

case accurately, spectra with the appropriate signatures must be

incorporated into the calibration data used to define the quanti-

tative model.

Finally, the methodology developed in this work is not limited

to PA 66, but could be applied to other PAs as well since all of

the materials contain the amide linkage which is responsible for

absorbing moisture. Furthermore, the methodology could be

extended to other condensation polymers such as polyesters

since they contain an ester linkage that follows a similar mecha-

nism of moisture uptake as PAs.
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